
 Extra exercises 6: Query operators I

Question 1: True or False: It is always possible to use materialization instead of pipelined
execution for any single step.​

Question 2: True or False: Some operators cannot be implemented with materialization.​

Question 3: Consider the following table:

CREATE TABLE patients (
 id INTEGER PRIMARY KEY,
 name CHAR(80),
 birth_year INTEGER,
 priority INTEGER,​
 hospital_id INTEGER REFERENCES hospitals(id),
 days_in_hospital INTEGER
);

With the following indexes:

-​ Primary key index on (id) using b+ tree, clustered
-​ Index on (name) using hash, unclustered
-​ Index on (priority, birth_year) using b+ tree, unclustered
-​ Index on (hospital_id) using hash, unclustered

Assume that there are 1 million records of random patients, where birth_year is uniformly
distributed between 1971 and 2010, hospital_id are uniformly distributed within 1000 different
values, and priority is uniformly distributed from 1 to 10. Names are almost unique.

Choose the most efficient selection strategy for the following queries:

1.​ SELECT * FROM patients ORDER BY name, birth_year

2.​ SELECT min(id) FROM patients WHERE priority = 1 AND hospital_id < 3​

3.​ SELECT * FROM patients WHERE hospital_id = 5 AND name = ‘Adam Baker’

4.​ SELECT average(priority) FROM patients WHERE hospital_id = 1 AND birth_year >
1995

Answers:

A.​ Use no indexes or just primary key index.
B.​ Use index on (name), then filter

C.​ Use index on (priority, birth_year), then filter
D.​ Use index on (hospital_id), then filter

Question 4: What is the reduction factor of the following predicates?

1)​ “WHERE hospital_id = 5”
2)​ “WHERE birth_year >= 1991”
3)​ “WHERE hospital_id = 1 AND priority > 5”
4)​ “WHERE birth_year > 2000 OR priority = 1”

Assuming that an INTEGER costs 4 bytes to store in a record. Note that the “patient” record is
exactly 100 bytes large.
Consider that we store the table in 25000 blocks, each block storing 40 records.

Question 5: Suppose that we want to execute the following query:
 SELECT DISTINCT days_in_hospital FROM patients WHERE priority = 1;​

-​ How many records do we expect to get, before removing duplicates? 100_000
-​ How many blocks do we need to store the results: 100 = 100_000 / (40 * 100 / 4)
-​ Including the cost to read in all initial records, the total I/O cost of removing duplicates

using optimized external sort with 3 total passes (1 initial + 2 extra passes) is: 25800 =
25000 + 100 + (1+2) * 100 * 2 + 100

-​ What is the minimum number of buffer pages required to achieve the optimal I/O cost
when removing duplicates using projection with hashing: 11 (> sqrt(100))

The table “hospitals” is as follows:

CREATE TABLE hospitals (
 id INTEGER PRIMARY KEY,
 priority INTEGER,
 opening_year INTEGER,
 number_of_beds INTEGER
);

With the same block size, each block can hold 250 “hospital” records.​
Assume that there are 25000 hospitals, stored in 100 blocks.

1)​ Suppose we want to run the following query:
​ SELECT patients.id AS patient_id,
​ ​ hospitals.id AS hospital_id
​ FROM patients, hospital
​ WHERE patients.priority = hospitals.priority;

Calculate the I/O cost for the joining operation using each of the following algorithms:
1.​ Simple nested loop join (patients first, then hospitals):
2.​ Page-Oriented Nested Loops Join
3.​ Block nested loops, with 100 outer blocks
4.​ Suppose that we can store the hash table in memory. ​

How many extra memory blocks do we need so that we can perform one-pass hash
join?

 Extra exercises 6: Query operators I
Solutions

Answer 1: true
Answer 2: false
Answer 3

1.​ A
2.​ C
3.​ B
4.​ D

Answer 4:
1.​ 0.001
2.​ 0.5
3.​ 0.0005
4.​ 0.325 (first one is 0.25, second one is 0.1)

Answer 5:

1)​ 100_025_000 = 25000 + 25000 * 40 * 100
2)​ patients first, then hospitals: 2_525_000 = 25000 + 25000 * 100​

hospitals first, then patients: 2_500_100 = 100 + 25000 * 100
3)​ patients first, then hospitals: 50000 = 25000 + 250 * 100​

hospitals first, then patients: 125500 = 100 + 1 * 25000
4)​ 100 (= # of blocks of hospitals). The I/O cost of the join is 25100 = 25000 + 100

